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STEREOSELECTIVE REDUCTION OF ,8-DIKETO ESTERS
DERIVED FROM TARTARIC ACID. A FACILE ROUTE TO OPTICALLY ACTIVE 6-
0X0-3,5-syn-ISOPROPYLIDENEDIOXYHEXANOATE, A VERSATILE SYNTHETIC
INTERMEDIATE OF ARTIFICIAL HMG Co-A REDUCTASE INHIBITORS.
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Abstract: Reduction of B,5-diketo esters derived from tartaric acid with HAI(i-Bu); gave stereoselectively B-hydroxy-8-
keto esters which were reduced with NaBH4 and Ei2BOMe to B,8-syn-dihydroxy esters. This strategy was successfully
applied to the synthesis of z-butyl (3R,55)-6-0x0-3,5-isopropylidenedioxyhexanoate starting from D-tartrate.

In view of increasing number of publications on artificial HMG Co-A reductase inhibitors having a
common structure 1,! straightforward synthetic methods of these targets have been awaited. We have shown?
that ¢-butyl 6-ox0-3,5-syn-isopropylidenedioxyhexanoate (2) is a versatile synthetic intermediate of highly
potent artificial HMG Co-A reductase inhibitor NK-104 (1a).3 Therein, we obtained the requisite aldehyde 2
through oxidative cleavage of (E)-7-phenyl-3,5-syn-isopropylidenedioxy-6-heptenoate of the Taber's alcohol.4:3
We have since been studying alternative methods and report herein a new one which is based on stereoselective
two-step reduction of a B,8-diketo ester derived from tartaric acid.
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Our synthetic strategy is summarized in Scheme 1. Properly protected tartrate I is converted into a B,8-
diketo ester IL. Reduction of II would undergo stereoselectively to give a B,3-dihydroxy ester IIl. When a
bulky protecting group was employed for R1, conformation of I will be fixed,5 thus allowing hydride to attack
si face of the B-carbonyl. Protection and deprotection of the diol moieties of the resulting ITI, followed by
oxidative glycol cleavage, should give the desired aldehyde IV.
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Tartrate 3, doubly protected by r-butyldimethylsilyl group, was allowed to react with a dianion of ¢-butyl
acetoacetate to give B,8-diketo ester 4 in good yield. Even if we employed excess amount of the dianion, we
could isolate 4 only. Methyl ester 4a was allowed to react with 2 eq of diisobutylaluminium hydride (DIBAL)
in THF-hexane (1 : 1) at -78°C to afford B-hydroxy-8-keto ester 5a and its diastereomer in a ratio of 89 : 117 in
51% yield. In cases of ethyl ester (4b) and isopropyl ester (4¢), diastereoselectivity and chemical yield
increased to 97 : 3, 56% and 99 : 1, 61% respectively. The stereochemical assignment was made by
transformation (¢f. Scheme 2) of 5a to t-butyl 6-hydroxy-3,5-isopropylidenedioxyhexanoate (¢f. compound iii
in footnote 12) and comparison of its optical rotation.

SO\E:C’:R )I\/cozB“t ;d\)k/goﬂsu (i-Bu),AlH 9&3\(‘1\/\/“"25“t
sio™ oR NaH n-BuLi sowv 0,R THF-hexane CO,R

-78°C, 20 h -78°C,4h
3 5
Si = t-BuMe,Si

R yield of 4 (%)  yield of 5 (%) diastereoselectivity of 5

a Me 76 51 89:11
b Et 74 56 97:3
< i-Pr 74 61 99:1

The stereochemical outcome of asymmetric induction observed using DIBAL is consistently understood
by the transition state illustrated in Scheme 2.8 The C(5)-carbonyl of 4 is enolized as evidenced by 1H-NMR,
and thus 1 eq of DIBAL is consumed to give a chelate like V. The conformation V is assumed to be fixed by the
silyl-protected glycol part so that these bulky silyloxy group is positioned anti due to steric repulsions. In
addition, dipole repulsion between 3- and 8-oxo groups is expected to be operating to give V predominantly.
Thus, hydride attacks C(3)-carbonyl preferentially from si-face, opposite to ester part at C(8). This model
explains well the fact that the diastereoselectivity is improved by a bulky R, i.e. isopropyl group.?
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To give access to final aldehyde 2 having correct absolute configuration, we started with B,5-diketo ester
7 which was prepared by the reaction of silyl-protected diisopropy! D-tartrate 6 with the dianion of zbutyl
acetoacetate (Scheme 3). Reduction of 7 with DIBAL afforded B-hydroxy-3-keto ester 8 in 60% yield. This
was reduced by sodium borohydride in the presence of EtzBOMe to give exclusively syn-B,8-dihydroxy ester 9
in 76% yield. After the protection of the resulting 1,3-diol part by acetonide, ¢-butyldimethylsilyl group was
removed by treatment of tetrabutylammonium fluoride to afford 1,2-diol 11 in 98% yield. Oxidative cleavage of
11 with sodium metaperiodate in a mixture of ether and water gave the desired aldehyde 211-12 in 85% yield.
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Stereoselective two-step reduction of a B,8-diketo ester derived from D-tartaric acid provides a chiral B,3-
dihydroxy ester which was led in short steps to #-butyl (3R,55)-6-0x0-3,5-isopropylidenedioxyhexanoate (2), a
versatile intermediate for the synthesis of artificial HMG Co-A reductase inhibitors. Aldehyde 2 is easily
transformed to various types of HMG Co-A reductase inhibitors through the Wittig-type olefination with the
carbanion of ArCH,P(O)Ph,.12
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Reduction of cyclic acetal i with DIBAL gave a 3 : 2 diastereomeric mixture of ii.
0O O
PWO@U‘ (i-Bu),AIH -
P 0" co;me TN
i 50%

Aldehyde 2 showed [a]20 -27.1° (¢ 1.75, CHCl3); IR (CHCl3): 2950, 1735, 1435, 1380, 1080, 1030,
775, 730 cor}; 1H-NMR (CDCl3): & 1.40-1.48 (m, 1H), 1.45 (s, 9H), 1.45 (s, 3H), 1.49 (s, 3H), 1.83
(dt, J = 129, 2.8 Hz, 1H), 2.35 (dd, J = 15.4, 5.9 Hz, 1H), 2.46 (dd, J = 15.4, 7.1 Hz, 1H), 4.29-4.37
(m, 2H), 9.58 (d, J = 0.5 Hz, 1H); MS m/z 201 (M*-Me, 24), 129 (31), 97 (36), 59 (100).

Since 2 is not stable, this was reduced (NaBHy4, MeOH, 0°C) to iii. Its optical rotation [«]p20 -7.57 °(c
2.00, MeOH) was compared with authentic data [lit. [o]p20 -3.7° (¢ 14.9, MeOH) (JP 01-1999454) and
{op20 -5.90° (c 2.0, McOH) (JP 02-262537)] of (3R,5S) isomer.

Reaction of 2 (THF, r.t., 3 h) with LilArCHP(Q)Ph3], derived from ArCH2P(O)Ph2 (Ar = a) and lithium
2,2,6,6-tetramethylpiperazide, afforded an olefin iv (Ar =a,E :Z =97 : 3) in 67% yield. Thisis
successfully transformed to NK-104 (1a) in 74% yield by treatment with trifluoroacetic acid (cf. ref 2a).
We thank Nissan Chemical Co. for supporting this research financially and providing information on NK-
104. The olefin iv exhibited [a]p20 +13.2° (¢ 1.25, CHCl3); IR (CHCl3): 3000, 1720, 1605, 1510, 1490,
1380, 1230, 1165, 1090, 1025, 840 cm-1; 1H-NMR (CDCl3): § 1.04 (dd, J = 8.1, 3.3 Hz, 2H), 1.31-1.25
(m, 2H), 1.37 (s, 3H), 1.40-1.35 (m, 4H), 1.46 (s, 12H), 2.35 (dd, J = 15.6, 6.4 Hz, 1H), 2.43 (m,
1H), 2.54 (dd, J = 15.6, 6.7 Hz, 1H), 4.32-4.25 (m, 1H), 4.38-4.33 (m, 1H), 5.57 (dd, J = 16.3, 6.1
Hz, 1H), 6.55 (44, J = 16.3, 1.2 Hz, 1H), 7.37-7.15 (m, 6H), 7.58 (dd, J = 6.6, 1.6 Hz, 1H), 7.95 (d, J
=8.4 Hz, 1H); MS m/z 517 (M*, 6), 461 (3), 448 (8), 402 (12), 386 (22), 290 (52), 288 (56), 275 (50),

57 (100).
Ho\ﬁ/n°23ut Ar/\ﬁ}%au'
iii iv

(Received in Japan 1 October 1992)



